248 research outputs found

    Human Coenzyme Q(10) Deficiency

    Get PDF
    Ubiquinone (coenzyme Q(10) or CoQ(10)) is a lipid-soluble component of virtually all cell membranes and has multiple metabolic functions. Deficiency of CoQ(10) (MIM 607426) has been associated with five different clinical presentations that suggest genetic heterogeneity, which may be related to the multiple steps in CoQ(10) biosynthesis. Patients with all forms of CoQ(10) deficiency have shown clinical improvements after initiating oral CoQ(10) supplementation. Thus, early diagnosis is of critical importance in the management of these patients. This year, the first molecular defect causing the infantile form of primary human CoQ(10) deficiency has been reported. The availability of genetic testing will allow for a better understanding of the pathogenesis of this disease and early initiation of therapy (even presymptomatically in siblings of patients) in this otherwise life-threatening infantile encephalomyopathy

    Group Strategyproof Pareto-Stable Marriage with Indifferences via the Generalized Assignment Game

    Full text link
    We study the variant of the stable marriage problem in which the preferences of the agents are allowed to include indifferences. We present a mechanism for producing Pareto-stable matchings in stable marriage markets with indifferences that is group strategyproof for one side of the market. Our key technique involves modeling the stable marriage market as a generalized assignment game. We also show that our mechanism can be implemented efficiently. These results can be extended to the college admissions problem with indifferences

    Effects of Inhibiting CoQ10 Biosynthesis with 4-nitrobenzoate in Human Fibroblasts

    Get PDF
    Coenzyme Q10 (CoQ10) is a potent lipophilic antioxidant in cell membranes and a carrier of electrons in the mitochondrial respiratory chain. We previously characterized the effects of varying severities of CoQ10 deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ10 biosynthesis. We observed a unimodal distribution of ROS production with CoQ10 deficiency: cells with <20% of CoQ10 and 50–70% of CoQ10 did not generate excess ROS while cells with 30–45% of CoQ10 showed increased ROS production and lipid peroxidation. Because our previous studies were limited to a small number of mutant cell lines with heterogeneous molecular defects, here, we treated 5 control and 2 mildly CoQ10 deficient fibroblasts with varying doses of 4-nitrobenzoate (4-NB), an analog of 4-hydroxybenzoate (4-HB) and inhibitor of 4-para-hydroxybenzoate:polyprenyl transferase (COQ2) to induce a range of CoQ10 deficiencies. Our results support the concept that the degree of CoQ10 deficiency in cells dictates the extent of ATP synthesis defects and ROS production and that 40–50% residual CoQ10 produces maximal oxidative stress and cell death

    Treatment of CoQ10 Deficient Fibroblasts with Ubiquinone, CoQ Analogs, and Vitamin C: Time- and Compound-Dependent Effects

    Get PDF
    Background: Coenzyme Q(10) (CoQ(10)) and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress.Methodology/Principal Findings: To test these concepts, we have evaluated the effects of CoQ(10), coenzyme Q(2) (CoQ(2)), idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ(10) deficiency. A final concentration of 5 mu M of each compound was chosen to approximate the plasma concentration of CoQ(10) of patients treated with oral ubiquinone. CoQ(10) supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ(10) deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements.Conclusions/Significance: These results indicate that: 1) pharmacokinetics of CoQ(10) in reaching the mitochondrial respiratory chain is delayed; 2) short-tail ubiquinone analogs cannot replace CoQ(10) in the mitochondrial respiratory chain under conditions of CoQ(10) deficiency; and 3) oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ(10) deficiencies should be treated with CoQ(10) supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ(2). Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present

    Metabolic Targets of Coenzyme Q10 in Mitochondria

    Get PDF
    This work was supported by grants from Ministerio de Ciencia e Innovacion, Spain, and the ERDF (RTI2018-093503-B-100), the Muscular Dystrophy Association (MDA-602322). C.M.Q. is supported by the Department of Defense (DOD) grant PR190511. A.H.-G. and P.G.-G. are `FPU fellows' from the Ministerio de Universidades, Spain. S.L.-H. is supported by the "becas de colaboracion" from the Ministerio de Universidades, Spain. E.B.-C. is supported by the Consejeria de Salud, Junta de Andalucia, Spain.We thank Stacy Kelly Aguirre for the English editing. Figures created with BioRender.com.Coenzyme Q10 (CoQ(10)) is classically viewed as an important endogenous antioxidant and key component of the mitochondrial respiratory chain. For this second function, CoQ molecules seem to be dynamically segmented in a pool attached and engulfed by the super-complexes I + III, and a free pool available for complex II or any other mitochondrial enzyme that uses CoQ as a cofactor. This CoQ-free pool is, therefore, used by enzymes that link the mitochondrial respiratory chain to other pathways, such as the pyrimidine de novo biosynthesis, fatty acid beta-oxidation and amino acid catabolism, glycine metabolism, proline, glyoxylate and arginine metabolism, and sulfide oxidation metabolism. Some of these mitochondrial pathways are also connected to metabolic pathways in other compartments of the cell and, consequently, CoQ could indirectly modulate metabolic pathways located outside the mitochondria. Thus, we review the most relevant findings in all these metabolic functions of CoQ and their relations with the pathomechanisms of some metabolic diseases, highlighting some future perspectives and potential therapeutic implications.Spanish GovernmentEuropean Commission RTI2018-093503-B-100Muscular Dystrophy Association MDA-602322United States Department of Defense PR190511Ministerio de Universidades, SpainJunta de Andaluci

    Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients

    Get PDF
    Background: The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. Methods: Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson's disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. Results: We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson's disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. Conclusion: Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated

    The price of rapid exit in venture capital-backed IPOs

    Get PDF
    This paper proposes an explanation for two empirical puzzles surrounding initial public offerings (IPOs). Firstly, it is well documented that IPO underpricing increases during “hot issue” periods. Secondly, venture capital (VC) backed IPOs are less underpriced than non-venture capital backed IPOs during normal periods of activity, but the reverse is true during hot issue periods: VC backed IPOs are more underpriced than non-VC backed ones. This paper shows that when IPOs are driven by the initial investor’s desire to exit from an existing investment in order to finance a new venture, both the value of the new venture and the value of the existing firm to be sold in the IPO drive the investor’s choice of price and fraction of shares sold in the IPO. When this is the case, the availability of attractive new ventures increases equilibrium underpricing, which is what we observe during hot issue periods. Moreover, I show that underpricing is affected by the severity of the moral hazard problem between an investor and the firm’s manager. In the presence of a moral hazard problem the degree of equilibrium underpricing is more sensitive to changes in the value of the new venture. This can explain why venture capitalists, who often finance firms with more severe moral hazard problems, underprice IPOs less in normal periods, but underprice more strongly during hot issue periods. Further empirical implications relating the fraction of shares sold and the degree of underpricing are presented

    The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene

    Get PDF
    Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype–phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9Q95X and Coq9R239X), and their responses to 2,4‐dihydroxybenzoic acid (2,4‐diHB). Coq9R239X mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4‐diHB increasing CoQ levels. In contrast, Coq9Q95X mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late‐onset mild mitochondrial myopathy, which does not respond to 2,4‐diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9R239X mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype–phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder.This work was supported by grants from the Marie Curie International Reintegration Grant Programme (COQMITMEL-266691 to LCL) within the Seventh European Community Framework Programme, from Ministerio de Economía y Competitividad, Spain (SAF2009-08315 and SAF2013-47761-R to LCL), from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (P10-CTS-6133 to LCL), and from the ‘CEIBioTic’ (20F12/1 to LCL). MLS is a predoctral fellow from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. LCL is supported by the ‘Ramón y Cajal’ National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643). MAT is supported by a predoctoral grant from the University of Granada. EJC is supported by the Research Program of the University of Granada. CMQ is supported by NICHD Grants 5K23 HDO65871-05 and P01 HD080642-01, and by a MDA grant. The proteomic analysis was performed in the CSIC/UAB Proteomics Facility of IIBB-CSIC that belongs to ProteoRed, PRB2-ISCIII, supported by Grant PT13/0001

    ANO10 mutations cause ataxia and coenzyme Q(10) deficiency

    Get PDF
    Inherited ataxias are heterogeneous disorders affecting both children and adults, with over 40 different causative genes, making molecular genetic diagnosis challenging. Although recent advances in next-generation sequencing have significantly improved mutation detection, few treatments exist for patients with inherited ataxia. In two patients with adult-onset cerebellar ataxia and coenzyme Q10 (CoQ10) deficiency in muscle, whole exome sequencing revealed mutations in ANO10, which encodes anoctamin 10, a member of a family of putative calcium-activated chloride channels, and the causative gene for autosomal recessive spinocerebellar ataxia-10 (SCAR10). Both patients presented with slowly progressive ataxia and dysarthria leading to severe disability in the sixth decade. Epilepsy and learning difficulties were also present in one patient, while retinal degeneration and cataract were present in the other. The detection of mutations in ANO10 in our patients indicate that ANO10 defects cause secondary low CoQ10 and SCAR10 patients may benefit from CoQ10 supplementation

    Coenzyme Q10 modulates sulfide metabolism and links the mitochondrial respiratory chain to pathways associated to one carbon metabolism

    Get PDF
    This work was supported by grants from Ministerio de Ciencia e Innovacion, Spain, and the ERDF (RTI2018-093503-B-100); the Muscular Dystrophy Association (MDA-602322); the University of Granada (grant reference 'UNETE', UCE-PP2017-06) (L.C.L.) and the National Institute of Health (NIH, United States) P01 HD080642-01 (C.M.Q.). A.H.-G. and P.G.-G. are `FPU fellows' from the Ministerio de Universidades, Spain. E.B.-C. was supported by the Junta de Andalucia. U.B.A. was supported by the Erasmus+ Program.Abnormalities of one carbon, glutathione and sulfide metabolisms have recently emerged as novel pathomechanisms in diseases with mitochondrial dysfunction. However, the mechanisms underlying these abnormalities are not clear. Also, we recently showed that sulfide oxidation is impaired in Coenzyme Q10 (CoQ10) deficiency. This finding leads us to hypothesize that the therapeutic effects of CoQ10, frequently administered to patients with primary or secondary mitochondrial dysfunction, might be due to its function as cofactor for sulfide:quinone oxidoreductase (SQOR), the first enzyme in the sulfide oxidation pathway. Here, using biased and unbiased approaches, we show that supraphysiological levels of CoQ10 induces an increase in the expression of SQOR in skin fibroblasts from control subjects and patients with mutations in Complex I subunits genes or CoQ biosynthetic genes. This increase of SQOR induces the downregulation of the cystathionine β-synthase and cystathionine γ-lyase, two enzymes of the transsulfuration pathway, the subsequent downregulation of serine biosynthesis and the adaptation of other sulfide linked pathways, such as folate cycle, nucleotides metabolism and glutathione system. These metabolic changes are independent of the presence of sulfur aminoacids, are confirmed in mouse models, and are recapitulated by overexpression of SQOR, further proving that the metabolic effects of CoQ10 supplementation are mediated by the overexpression of SQOR. Our results contribute to a better understanding of how sulfide metabolism is integrated in one carbon metabolism and may explain some of the benefits of CoQ10 supplementation observed in mitochondrial diseases.Spanish GovernmentEuropean Union (EU) RTI2018-093503-B-100Muscular Dystrophy Association MDA-602322University of Granada UCE-PP2017-06United States Department of Health & Human Services National Institutes of Health (NIH) - USA P01 HD080642-01Junta de AndaluciaErasmus+ Progra
    corecore